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Abstract — Drug-drug interactions (DDIs) occur when
two drugs react with each other, which may cause unex-

pected side effects and even death of the patient. Methods
that use adverse event reports to predict unexpected DDIs

are limited by two critical yet challenging issues. One is the

difficulty of selecting discriminative features from numer-
ous redundant and irrelevant adverse events for modeling.

The other is the data imbalance, i.e., the drug pairs causing
adverse effects are far less than those not causing adverse

effects, which leads to poor accuracy of DDIs detection.

We propose a multi-layer feature selection method to select
discriminative adverse events and apply an over-sampling

technique to make the data balanced. The experimental re-

sults show that the validation accuracy of positive DDIs on
the Canada Vigilance Adverse Reaction Online Database

increases to two times, and 110 DDIs are identified on the
drug interactions checker of Drugs.com in USA.

Key words — Adverse event reports, Drug-drug inter-

actions (DDIs), Feature selection, Data balance.

I. Introduction

Drug-drug interactions (DDIs) may have adverse ef-
fects on the patients and even lead to death of the
patients[1−3]. Predicting unexpected DDIs as early as pos-
sible is of great significance to clinical practice. Some al-
gorithms make use of drugs’ pleiotropic interactions to
predict off target effects[4−9]. However, these effects are
not necessarily adverse. Some DDIs can be discovered by
analyzing molecular targets and metabolizing enzymes of
drugs. For example, when two drugs are metabolized by
the same enzyme (e.g., CYP3A4), it may lead to unex-
pected blood levels[10−13]. Santiago Vilar predicted po-
tential DDIs by establishing interaction profile similarity
matrix of known DDIs[14]. These approaches are based on
theory rather than clinical data, which make them less
reliable.

Quantitative signal detection methods are primar-
ily developed to detect drug adverse event signals
from Adverse event reporting system(AERS) in clinical
practice[15−16], but limited by underreporting of the un-
expected events[17−20]. In order to address the issue of un-
derreporting, Tatonetti et al. proposed a machine learn-
ing framework to predict DDIs[21], but there are still
two problems to be resolved: 1) For feature selection, a
Fisher’s exact test is used to determine the enrichment
of each feature, which only considers the associations be-
tween features and label variables but not the correlations
of features. This may miss effective features and reduce
the accuracy of DDIs prediction. 2) The data set for mod-
eling is imbalanced, i.e., the number of positive samples
(really having adverse effects) is much less than that of the
negative samples (having no adverse effects), which will
lead to low prediction accuracy for positive drug pairs.
It is disadvantageous for the detection of DDIs, because
the cost of misclassifying positive drug pairs as negative
is much greater than misclassifying negative drug pairs as
positive. In this paper, we propose a multiple-layer feature
selection method to select discriminative features with
lower computational complexity, and then balance the
data set with an oversampling technique. The experimen-
tal results demonstrate that our method ensures high ac-
curacy for true positive drug pairs without severely jeop-
ardizing the overall accuracy, and more predicted DDIs
are also identified.

II. The Proposed Method

Based on framework provided by Tatonetti[21], we
investigate drug interactions related to cholesterol. Fre-
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quency matrices for single drug and drug pairs are con-
structed respectively (Fig.1 and Fig.2). In Fig.1, each row
corresponds to one drug (i.e., a sample), each column cor-
responds to an adverse effect (i.e., a feature), and the el-
ement of the matrix represents the reported frequencies
of the adverse events. The last column is the class label
identified by manual curation, 1 indicates that the drug is
expected to cause cholesterol related adverse effect and 0
is not. In Fig.2, each row corresponds to a drug pair (i.e.,
a sample), each column corresponds to an adverse effect
(i.e., a feature), and the element of the matrix represents
the reported frequencies of the adverse events. The last
column is the class label to be predicted.

Fig. 1. The frequency matrix for the single drug

Fig. 2. The frequency matrix for the drug pairs

After constructing frequency matrices, we propose a
multiple-layer feature selection method to select predic-
tive features and an oversampling method to balance the
data set. Finally we learn a logistic classifier on single-
drug frequency matrix and apply it to drug-pairs fre-
quency matrix to predict potential DDIs. The work is
illustrated by Fig.3.

1. Multiple-layer feature selection method
The task of feature selection is to choose a subset

of features most relevant with the class label[22]. Least
absolute shrinkage and selection operator (LASSO) is a
method for linear model estimation with L1-regularization
and also used for feature selection by shrinking some co-
efficients to zero[23]. The time complexity of the ordinary
LASSO is O (np min {n, p}), here n is the number of sam-
ples and p is the number of features. For DDIs prediction
model in this paper, the number of the features is more
than 7000, which brings the problem of computational
complexity. So we combine LASSO with Correlation based
feature selector (CFS) to a multiple-layer method so that
we can select discriminative features with lower compu-
tational complexity. First we use CFS to get a smaller
feature subset, namely reduce the value of p, and then we
apply LASSO to select features from the subset. Fig.4 il-
lustrates the multiple-layer feature selection method. The
details are listed as follows:

Step 1: Construct frequency matrices for single drug
and drug pairs respectively, and take the adverse events
frequency as the features.

Fig. 3. The data flow diagram of the method

Fig. 4. The procedure of multiple-layer feature selection

Step 2: Calculate feature-label and feature-feature
correlations.

Step 3: Use the best-first strategy to search the space
of feature subsets, and iteratively expand the subset ac-
cording to the rule of best Merit value.

Step 4: Use LASSO to select discriminative features
from a smaller feature subset of the previous step.

Step 2 and Step 3 are implemented based on the CFS

algorithm that measure the merit of feature subsets us-
ing a evaluation function[24]. The function is defined as
Eq.(1).

Meritsk
=

krcf√
k + k(k − 1)rff

(1)

Here, k is the number of features, sk is a feature sub-
set consisting of k features, rcf is the average value of
all feature-label correlations, and rff is the average value
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of all feature-feature correlations. The numerator of equa-
tion indicates the predictive ability of features and the de-
nominator indicates the redundancy among the features.
A feature subset having greater feature-label correlations
and less feature-feature correlations will achieve the best
Merit value.

The objective of LASSO is defined as Eq.(2):

argmin
β

{
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)2} subject to
p∑

j=1

|βj | ≤ t

(2)
Here β =< β0, β1, · · · , βp > is the coefficient vector, n

is the size of samples and p is the number of features,
xij is the jth feature of the ith sample, yi is the obser-
vation of the ith sample, t is a parameter that is used to
control the amount of shrinkage. With the decrease of t

value, some coefficients will be set to zero, which means
the corresponding features are pruned from the model.
These pruned features are irrelevant (or less relevant) to
the observations.

2. Data balance

In our prediction model the negative samples (2526
drugs having no cholesterol related effects) are much more
than the positive samples (26 drugs having cholesterol
related effects). In that case, classifiers with good over-
all accuracy may provide low accuracy for positive drugs.
It is disadvantageous for the detection of DDIs, because
the cost of misclassifying positive drug pairs as negative
is much greater than misclassifying negative drug pairs
as positive. To deal with imbalance data there are sam-
pling methods and algorithmic methods[25]. The algorith-
mic methods exploit cost sensitive learning mechanism to
improve existing algorithms, which consider the costs of
misclassifying samples and make the classifier more ac-
curate for the classification of minority samples. But in
many practical situations, it is very difficult to describe
the misclassifying costs exactly and an unreasonable cost
will decrease the accuracy of the classifier[26]. Sampling
methods consist of oversampling and undersampling. In
the prediction of DDIs, the quantity of minority samples
is too small, so the undersampling methods will cause
a serious loss of majority samples information. There-
fore, we use Synthetic minority over-sampling technique
(SMOTE) to balance the data set, which creates artificial
data based on the feature space similarities between exist-
ing minority examples. For a sample xi belonging to the
minority class, we randomly choose one of the K-nearest
neighbors in the minority class (K is adjustable), com-
pute the vector difference and multiply it with a random
number between [0,1], then add this vector to xi

[27].It is
defined as Eq.(3).

xnew = xi + (x̂i − xi) × δ (3)

Here, xi is a existing minority sample, x̂i is a K-nearest
neighbor belonging to the minority class for xi, δ is a
random number between [0, 1], xnew is a new artificial
sample along the line segment connecting xi to x̂i. By
SMOTE, synthetic samples representing the characters of
positive drugs are added to the data set, which will help
to improve the prediction accuracy of positive samples.

III. Experiments and Results

1. Data sources
We downloaded 1854669 adverse event reports (the

first quarter of 2004 to the first quarter of 2009) from
AERS of the U.S. Food and Drug Administration (FDA).
We use only two kinds of reports. One is those reporting
exactly single drug at least 10 times (2552 single drugs),
and the other is those reporting two drugs at least 5 times
(6341 drug pairs). The total number of the events is 7109.
Three databases are used to measure the performance of
our method: 1) MedEffect, Canada Vigilance Adverse
Reaction Online Database (from 1965 to 2013). 2) The
Veterans Affairs (VA), a list of significant and critical
DDIs from the Veterans Affairs Hospital in Arizona. 3)
Drugs.com, the most popular, comprehensive and up-to-
date source of more than 24,000 prescription drugs infor-
mation online in USA.

2. Feature selection
Based on CFS, we search the feature space using the

best-first strategy, and terminate if consecutive 5 nodes
show no improvement, and get a subset of 28 features.
Then we continue to use LASSO to select features highly
correlated from the 28 features. The tuning parameter
is the fraction of L1 norm of the coefficients, which is
used to constrain the coefficients. When it is set to 0.15,
the cross validation error is the minimum. Five features
are screened out, i.e., aspiration pleural cavity abnormal,
blood triglycerides increased, coronary artery reocclusion,
myalgia and rhabdomyolysis. In order to compare the per-
formance of different features, we train the logistic clas-
sifier using 28 features and 5 features respectively on the
FDA single drug data set, and adopt 10-fold cross val-
idation. Four measures are used to evaluate the perfor-
mance. True positive rate (TPR) measures the propor-
tion of positive samples correctly identified, true negative
rate (TNR) measures the proportion of negative samples
correctly identified. Accuracy measures the proportion of
correction for all the samples. Area under the roc curve
(AUC) measures the performance of the classifier. Exper-
imental results in Table 1 demonstrate that the model
using 5 features performs better than that using 28 fea-
tures.

Table 1. Multiple-layer feature selection method

TPR TNR Accuracy AUC

28 features 0.115 0.994 0.985 0.608

5 features 0.269 0.997 0.989 0.867
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3. Model validation for data balance
MedEffect database is used for validating the perfor-

mance of data balance. Since there is no accepted gold
standard for identification of drug interactions, we label
drug pairs as positive if at least one of the drug pairs is
related to the adverse event, which is called strategy of
Known single effects (KE). These drug pairs may do not
indicate drug interactions, but build confidence that the
model can detect true adverse event signals.

We build 3 logistic classifiers respectively using 3 fea-
tures proposed by Tatonetti[21], 5 features (ours without
data balance), and 5 features with data balance (ours
with data balance). Then we validate them on MedEf-

fect by the strategy of KE. Synthetic positive samples are
created step by step (doubling each time) until the num-
bers of positive samples and negative samples are approx-
imately equal. Fig.5 shows the True positive rate before
and after data balance. K is the number of nearest neigh-
bors used for SMOTE. The number of minority class sam-
ples increases to N times by creating synthetic examples.
From Fig.5, we can see that with the increase of synthetic
samples the true positive rate is improved greatly, which
demonstrates that our method with data balance achieve
higher accuracy for positive than Tatonetti’s method[21]

and our method without data balance.

Fig. 5. True positive rate on MedEffect using the strategy of known single effects

Table 2 shows that our method with data balance
makes the TPR twice of Tatonetti’s[21], while the average
precision only decreases 0.3%. It is significant for predic-
tion of DDIs, because the cost of misclassifying positive
drug pairs is more severe than that of misclassifying neg-
ative drug pairs.

Table 2. Validation on MedEffect using the

strategy of known single effects

TPR Avg. precision AUC

Tatonetti’s method 0.259 0.974 0.744

Ours without data balance 0.296 0.967 0.753

Ours with data balance 0.556 0.971 0.754

4. DDIs prediction
We learn the logistic classifier on FDA single-drug

samples and apply them to drug-pairs samples to predict
putative interactions. These interactions are validated us-
ing three strategies: 1) Drug pairs whose effect can be
explained by the strategy of KE. 2) Drug pairs already
known to have clinically significant interactions according
to the list of VA. 3) Drug pairs identified by Drugs.com.

Table 3 shows the breakdown of the DDI predictions be-
tween known single drug effects, established DDIs of VA,
and DDIs checked on Drugs.com. We can see that our
method can discover more true positive drug pairs by
the strategy of KE. By the strategy of VA, Tatonetti’s
method[21] and our method without data balance predicts
the same 7 pairs of drugs, which are also predicted by our
method with data balance. Moreover, the 7 pairs of drugs
are all can be explained that at least one of the drug pairs
has cholesterol-related adverse effects. In addition, we use
Drug Interactions Checker on the website Drugs.com to
check drug pairs that have not been validated on KE and
VA. 6, 18, 110 drug pairs are validated respectively us-
ing Tatonetti’s method[21], our method without data bal-
ance and our method with data balance, which account
for 5.4%, 11.8%, 20.7% of the total predictions. These
predictions are more significant because their interactions
have been identified by clinical practice rather than by
the strategy of KE (i.e., at least one of the drug pairs is
associated with the adverse event).

Table 3. Drug-pair predictions validated by three strategies.

Known single effects Known DDIs of VA Drugs.com
Total prediction

numbers percent numbers percent numbers percent

Tatonetti’s method 111 75 67.6% 7 6.3% 6 5.4%

Ours without data balance 153 85 55.6% 7 4.6% 18 11.8%

Ours with data balance 531 191 36.0% 8 1.5% 110 20.7%

Table 4. Breakdown of drug-pair predictions into three groups.

Total predictions Known single effects Known DDIs Novel DDIs

Tatonetti’s method 111 75 6 30

Ours without data balance 153 85(71) 18(6) 50

Ours with data balance 531 191(75) 111(6) 229
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Table 4 and Fig.6 show the breakdown of the DDI pre-
dictions between known single drug effects, known DDIs,
and novel interactions predicted by our method. Known
DDIs indicates that none of the drug pairs has cholesterol-
related adverse effects but there is an interaction between
the two drugs known to the DDIs of VA and Drugs.com.
In terms of known single drug effects, 71 pairs of drugs
detected by Tatonetti’s method[21] are also discovered by
our method without data balance, and our method with
data balance detect all the 75 drug pairs of Tatonetti’s
method[21]. In terms of known DDIs, 6 drug pairs de-
tected by Tatonetti’s method[21] are all identified by our
methods.

Fig. 6. Drug-drug interactions broken into three groups using

Tatonetti’s method and our method

IV. Conclusions

Compared with Tatonetti’s work[21], the multiple-
layer features selection method together with data bal-
ance can choose more discriminative features and make
the prediction model work more effectively. The area of
ROC for the validation on MedEffect has been improved,
and the true positive rate also increases a lot.

We build a predictive model on the single-drug sam-
ples and apply it to the drug-pairs samples, which is eval-
uated by two strategies, i.e., known single drug effects
and known DDIs. The experimental results show that our
method can detect all the drug pairs that are identified
by Tatonetti’s method[21]. Especially for the known DDIs,
our method with data balance achieves maximum in the
terms of numbers and detection rate, which is signifi-
cant for the detection of DDIs, because the strategy of
known DDIs represents the real interactions of two drugs.
Moreover, our method predicts more novel interactions,
which means offering more chances for follow-up research
in Electronic medical record (EMR) and other clinical
data.

However, there are still some limitations, for example,
the single-drug samples need to be labeled manually, the
drug name is non-unique (e.g. generic name and trade
name), and the labeling of true positive drug pairs is in-
complete, all these situations will influence the accuracy
of validation or prediction.
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